## metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## Zhong-Lu You,<sup>a,b</sup> Zhong-Duo Xiong<sup>b</sup> and Hai-Liang Zhu<sup>a,b</sup>\*

<sup>a</sup>Department of Chemistry, Fuyang Normal College, Fuyang Anhui 236041, People's Republic of China, and <sup>b</sup>Department of Chemistry, Lanzhou University, Lanzhou 730000, People's Republic of China

Correspondence e-mail: hailiang\_zhu@163.com

#### **Key indicators**

Single-crystal X-ray study T = 293 K Mean  $\sigma$ (C–C) = 0.010 Å Disorder in solvent or counterion R factor = 0.073 wR factor = 0.240 Data-to-parameter ratio = 14.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

со

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

## Bis{2-[3-(diethylamino)propyliminomethyl]phenolato}copper(II) diperchlorate

In the title centrosymmetric mononuclear copper(II) compound,  $[Cu(C_{14}H_{22}N_2O)_2](ClO_4)_2$ , the  $Cu^{II}$  atom is coordinated by two N atoms and two O atoms from two Schiff base ligands. The coordination geometry is slightly distorted square-planar. The disordered perchlorate anions are hydrogen bonded to the cation *via* N-H···O hydrogen bonds.

Received 1 July 2004 Accepted 7 July 2004 Online 17 July 2004

#### Comment

Recently, we have reported a few Schiff base complexes (You, Lin *et al.*, 2003; You, Qu *et al.*, 2003; You, Xiong *et al.*, 2004; You, Zhu & Liu, 2004). As an extension of our work on the structural characterization of Schiff base complexes, a mononuclear copper(II) complex, (I), is reported here.



The structure of the title compound, (I) (Fig. 1), consists of a mononuclear  $[Cu(C_{14}H_{22}N_2O)_2]^{2+}$  cation and two perchlorate anions. The Cu atom, on an inversion center, is in a slightly distorted square-planar geometry and is four-coordinated by two N atoms and two O atoms from two Schiff base ligands. The two *trans* angles at the copper(II) center are exactly 180°, by virtue of the crystallographic symmetry (Table 1), and the other angles are close to 90°, *viz.* 88.29 (16) and 91.71 (16)°, indicating a slight deviation from perfect square-planar geometry. The Cu1–O1 bond length [1.888 (4) Å] is comparable to that observed in another Schiff base complex [1.889 (2) Å; You, Chen *et al.*, 2004]. The Cu1– N1 bond distance [2.002 (4) Å] is slightly longer than the value [1.927 (3) Å] observed in the same previously reported complex.

In the crystal structure of (I), the perchlorate anions are hydrogen bonded to the Cu<sup>II</sup> cation through N-H···O hydrogen bonds [H2···O2<sup>i</sup> = 1.97 (6) Å, N2···O2<sup>i</sup> = 2.959 (12) Å and N2-H2···O2<sup>i</sup> = 175 (5)°; symmetry code: (i) 1 - x, -y, 1 - z; Fig. 2].



#### Figure 1

A view of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. Both components of the disordered perchlorate anions are shown. The unlabeled atoms are related by the symmetry operation (1 - x, -y, 1 - z).



#### Figure 2

The crystal packing of (I), viewed along the *a* axis. All H atoms have been omitted for clarity. Hydrogen bonds are shown as dashed lines.

## **Experimental**

N,N-Diethylpropane-1,3-diamine and salicylaldehyde were available commercially and were used without further purification. N,N-Diethylpropane-1,3-diamine (0.2 mmol, 26.5 mg) and salicylaldehyde (0.2 mmol, 22.4 mg) were dissolved in methanol (20 ml). The mixture was stirred for 1 h to obtain a clear yellow solution of L (0.2 mmol), where *L* is 2-[(3-(diethylamino)propyliminomethyl]phenol. To the solution of *L* was added a solution of Cu(ClO<sub>4</sub>)<sub>2</sub>·7H<sub>2</sub>O (0.1 mmol, 38.9 mg) in methanol (10 ml), with stirring. After keeping the resulting solution in air for 15 d, blue block-shaped crystals were formed at the bottom of the vessel on slow evaporation of the solvents. The crystals were isolated, washed three times with methanol and dried in a vacuum desiccator using anhydrous CaCl<sub>2</sub> (yield 82.1%). Analysis found: C 45.8, H 6.2, N 7.8%; calculated for  $C_{28}H_{44}Cl_2CuN_4O_{10}$ : C 46.0, H 6.1, N 7.7%.

### Crystal data

| $Cu(C_{14}H_{22}N_2O)_2](CIO_4)_2$<br>$M_r = 731.11$<br>Monoclinic, $P_{2_1}/n$<br>a = 7.120 (2) Å<br>b = 17.501 (4) Å<br>c = 13.730 (3) Å<br>B = 96.05 (2)°<br>V = 1701.3 (7) Å <sup>3</sup><br>Z = 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $D_x = 1.427 \text{ Mg m}^{-3}$<br>Mo K $\alpha$ radiation<br>Cell parameters from 1282<br>reflections<br>$\theta = 2.3-18.4^{\circ}$<br>$\mu = 0.86 \text{ mm}^{-1}$<br>T = 293 (2) K<br>Block, blue<br>$0.32 \times 0.28 \times 0.21 \text{ mm}$                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data collection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                           |
| Siemens SMART CCD<br>diffractometer<br>$\vartheta$ scans<br>Absorption correction: multi-scan<br>( <i>SADABS</i> ; Sheldrick, 1996)<br>$T_{min} = 0.771, T_{max} = 0.841$<br>2156 measured reflections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3479 independent reflections<br>1954 reflections with $I > 2\sigma(I)$<br>$R_{int} = 0.048$<br>$\theta_{max} = 26.5^{\circ}$<br>$h = -7 \rightarrow 8$<br>$k = -21 \rightarrow 21$<br>$l = -17 \rightarrow 17$                                                                                            |
| Refinement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                           |
| Refinement on $F^2$<br>$R[F^2 > 2\sigma(F^2)] = 0.074$<br>$\nu R(F^2) = 0.240$<br>S = 1.02<br>S = 1.0 | H atoms treated by a mixture of<br>independent and constrained<br>refinement<br>$w = 1/[\sigma^2(F_o^2) + (0.1342P)^2]$<br>where $P = (F_o^2 + 2F_c^2)/3$<br>$(\Delta/\sigma)_{max} < 0.001$<br>$\Delta\rho_{max} = 0.55 \text{ e} \text{ Å}^{-3}$<br>$\Delta\rho_{min} = -0.34 \text{ e} \text{ Å}^{-3}$ |

# Table 1 Selected geometric parameters (Å, °).

| Cu1-O1 | 1.888 (4) | Cu1-N1 |  |
|--------|-----------|--------|--|
|        |           |        |  |

| $O1-Cu1-O1^{i}$     | 180        | O1-Cu1-N1               | 91.71 (16) |
|---------------------|------------|-------------------------|------------|
| $D1 - Cu1 - N1^{i}$ | 88.29 (16) | N1 <sup>i</sup> -Cu1-N1 | 180        |
|                     |            |                         |            |

2.002 (4)

Symmetry code: (i) 1 - x, -y, 1 - z.

The H atom bonded to N2 was refined independently with an isotropic displacement parameter, giving an N-H distance of 0.99 (6) Å. All remaining H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C-H distances of 0.93–0.97 Å, and with  $U_{iso}(H) = 1.2U_{eq}(C)$  or  $1.5U_{eq}(C)$  for methyl atoms. The O atoms of the unique perchlorate anion are disordered over two distinct sites with a ratio of occupancies of 0.692 (3):0.308 (3).

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*); software used to prepare material for publication: *SHELXTL*.

The authors thank the Education Office of Anhui Province, People's Republic of China, for research grant No. 2004kj300zd.

### References

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

- Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Siemens (1996). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- You, Z.-L., Chen, B., Zhu, H.-L. & Liu, W.-S. (2004). Acta Cryst. E60, m884– m886.
- You, Z.-L., Lin, Y.-S., Liu, W.-S., Tan, M.-Y. & Zhu, H.-L. (2003). Acta Cryst. E59, m1025–m1027.
- You, Z.-L., Qu, Y., Liu, W.-S., Tan, M.-Y. & Zhu, H.-L. (2003). Acta Cryst. E59, m1038–m1040.
- You, Z.-L., Xiong, Z.-D., Liu, W.-S., Tan, M.-Y. & Zhu, H.-L. (2004). Acta Cryst. E60, m79–m81.
- You, Z.-L., Zhu, H.-L. & Liu, W.-S. (2004). Acta Cryst. E60, m560m562.